Test Units Overview: Difference between revisions

From STRIDE Wiki
Jump to navigation Jump to search
 
(99 intermediate revisions by 4 users not shown)
Line 1: Line 1:
== Introduction  ==
== What are STRIDE Test Units? ==


STRIDE enables testing of C/C++ code through the use of xUnit-style test units. Test units can be written by developers, captured using an SCL pragma, and executed from the host. STRIDE facilitates the execution of some or all of the test units by automatically creating entry points for the execution of test units on the target.  
'''STRIDE Test Units''' is a general term for [http://en.wikipedia.org/wiki/XUnit xUnit-style] test modules running within the STRIDE runtime framework. These tests--written in C and C++--are compiled and linked with your embedded software and run in-place on your target hardware. They are suitable for both developer unit testing as well as end-to-end integration testing.


== Using test units  ==
An external [[Stride Runner|Test Runner]] is provided which controls the execution of the tests and publishes test results to the local file system and optionally to S2's Internet [[STRIDE Test Space]].


=== Prerequisites  ===
== Test Unit Features ==
In all cases, STRIDE Test Units provide the following capabilities typical of all [http://en.wikipedia.org/wiki/XUnit xUnit-style] testing frameworks:
* Specification of a test as a test method
* Aggregation of individual tests into test suites which form execution and reporting units
* Specification of expected results within test methods (typically by using one or more [[Test Code Macros]])
* Test fixturing (optional setup and teardown)
* Test parametrization (optional constructor/initialization parameters)
* Automated execution
* Automated results report generation


see [[Desktop Installation#Third Party Components|Perl requirements]].
=== Unique STRIDE Test Unit Features ===
 
In addition, STRIDE Test Units offer these unique features:
===How to get started (Overview)===
; On-Target Execution
 
: Tests execute on the target hardware in a true operational environment. Execution and reporting is controlled from a remote desktop (Windows, Linux or FreeBSD) host
The required steps to get started with writing test units are as follows:
; Dynamic Test and Suite Generation
 
: Test cases and suites can be created and manipulated at runtime
<ol>
; [[Using Test Doubles|Test Doubles]]
<li>Create a new Studio workspace (or open an existing one).</li>
: Dynamic runtime function substitution to implement on-the-fly mocks, stubs, and doubles
<li>Set the workspace to compile in C++ mode (In Studio, choose Tools->Settings->Compile as Cpp).</li>
; [[Test Point Testing in C/C++|Behavior Testing]] (Test Points)
<li>Write a test unit. You may create a C++ test class or a C test function as your test unit. Click '''[[Test_Units#Test_Unit_Requirements|here]]''' for more information on creating test units.</li>
: Support for testing of asynchronous activities occurring in multiple threads
To implement a test unit as a test class:
; Multiprocess Testing Framework
<source lang=cpp>
: Support for testing across multiple processes running simultaneously on the target
#include <srtest.h>
; Automatic Timing Data Collection
 
: Duration are automatically measured for each test case.
class Simple {
; Automatic Results Publishing to Local Disk and Internet
public:
: Automatic publishing of test results to [[STRIDE Test Space]]
    int test1() { return  0;} // PASS
    int test2() { return 23;} // FAIL <>0
    bool test3() { return true;} // PASS
    bool test4() { return false;} // FAIL
};
 
#pragma scl_test_class(Simple)
</source>
Or, as a test function list:
<source lang=c>
#ifdef __cplusplus
extern "C" {
#endif
 
int test1(void)
{
    return 0; // PASS
}
 
int test1(void)
{
    return 23; // FAIL <>0
}
 
#pragma scl_test_flist("Simple", test1, test2)
 
#ifdef __cplusplus
}
#endif
</source>
 
<li>Compile the workspace & review the '''Simple''' interface in the Studio Interface tab</li>
<li>Create a script to generate the Intercept Module(IM) '''after''' the compilation step.
:For the simple STUB generation required for test unit execution, you can use the following code</li>
<source lang=perl>
use strict;
use Win32::OLE qw(in);
Win32::OLE->Option(Warn => 3);
my $intercept = $main::studio->Workspace->Intercept;   
$intercept->{Path} = $main::studio->Workspace->Path;
$intercept->{Name} = $main::studio->Workspace->Name;
map {$intercept->Item($_)->{Stub} = 1} (0..($intercept->Count - 1));
$intercept->Create();
</source>
<li>Optionally add custom scripts to automate the building and executing your application.</li>
<li>Ensure that the Studio workspace include path contains the location to all of your test unit declaration (header) files.</li>
<li>Once you have created one or more test units, ensure the following:
:* Workspace is compiled and saved
:* Intercept Module is generated (Stubs for all Test Units)
:* Target application re-built
:* Target application downloaded & started
:* STRIDE Connected to Target
</li>
 
<li>If your application is running, you can start executing test units.
:* You can test-execute individual test units interactively using the '''Studio interface''' view. To do this, open the user interface view corresponding to the test unit you would like to execute, then call it. The return values will indicate how many tests produced each of four (4) result types. Furthermore, the input to the entry point will allow you to select all methods for execution (the default) or individual methods via a dropdown list of enumerated values.
:* Once you are confident that the test units are behaving as expected, you can generate one or more execution scripts using the '''Script Wizard'''.  Sample '''[[templates]]''' for executing test unit entry points are provided in the %STRIDE_DIR%\templates\Script Wizard directory.
:* When writing scripts to execute test units, the [[AutoScript#ascript.TestUnits|AutoScript TestUnits]] collection is a powerful tool for test unit execution and reporting, and for obtaining test results.</li>
<li>For integration with larger regression test workspaces, we recommend that developers check in their test unit code and, optionally, the template-generated scripts that can be used to execute their test units.</li>
</ol>
 
===Pragmas for Test Units===
STRIDE supports three pragmas for capturing and qualifying test units:
 
*'''<code>scl_test_class ( class-name )</code>''': Declares a test class as captured. Once captured, STRIDE will generate the appropriate code for executing the test methods in the class. See the [[scl_test_class|scl_test_class page]] for more information.
*'''<code>scl_test_flist ( test-unit-name , test-function-name { , test-function-name } )</code>''': Declares a test unit as captured, by the specified test-unit-name. One or more functions (test methods) are associated with the test unit. Once captured, STRIDE will generate the appropriate code for executing the associated test methods. See the [[scl_test_flist|scl_test_flist page]] for more information.
*'''<code>scl_test_cclass ( struct-name , init-function-name { , deinit-function-name } )</code>''': Declares a test unit as captured. Once captured, STRIDE will generate the appropriate code for executing the associated test methods. See the [[scl_test_cclass|scl_test_cclass page]] for more information.
*'''<code>scl_test_setup ( test-unit-name , method-name )</code>''': [optional] Declares a member method to be a setup fixture for the test unit. If specified, the setup method will be called before the execution of each test method. See the [[scl_test_setup|scl_test_setup page]] for more information.
*'''<code>scl_test_teardown ( test-unit-name , method-name )</code>''': [optional] Declares a member method to be a teardown fixture for the test unit. If specified, the teardown method will be called after the execution of each test method. See the [[scl_test_teardown|scl_test_teardown page]] for more information.
 
== Test Unit Requirements  ==
 
Several variations on typical xUnit-style test units are supported. The additional supported features include:
 
*Test status can be set using STRIDE Runtime APIs ''or'' by specifying simple return types for test methods.
*Integral return types: 0 = PASS; &lt;&gt; 0 = FAIL
*C++ bool return type: true = PASS; false = FAIL
*void return type with no explict status setting is assumed PASS
*Test writers can create additional child suites and tests at runtime by using Runtime APIs.
*We do not rely on exceptions for reporting of status.
 
The STRIDE test class framework has the following requirements of each test class:  
 
*The test class must have a suitable default (no-argument) constructor.
*The test class must have one or more public methods suitable as test methods. Allowable test methods always take no arguments (void) and return either void, simple integer types (int, short, long or char) or bool. At this time, we do not allow typedef types or macros for the return values specification.
*the scl_test_class pragma must be applied to the class.
 
 
=== Simple example using return values for status  ===
==== Using a Test Class ====
 
<source lang=cpp>
#include <srtest.h>
 
class Simple {
public:
    int tc_Int_ExpectPass() {return 0;}
    int tc_Int_ExpectFail() {return -1;}
    bool tc_Bool_ExpectPass() {return true;}
    bool tc_Bool_ExpectFail() {return false;}
};
 
#ifdef _SCL
#pragma scl_test_class(Simple)
#endif
</source>
 
==== Using a Test Function List ====
<source lang=c>
#include <srtest.h>
 
#ifdef __cplusplus
extern "C" {
#endif
 
int tf_Int_ExpectPass(void) {return 0;}
int tf_Int_ExpectFail(void) {return -1;}
 
#ifdef _SCL
#pragma scl_test_flist("Simple", tf_Int_ExpectPass, tf_Int_ExpectFail)
#endif
 
#ifdef __cplusplus
}
#endif
</source>
 
=== Simple example using runtime test service APIs  ===
==== Using a Test Class ====
<source lang=cpp>
#include <srtest.h>
 
class RuntimeServices_basic {
public:
  void tc_ExpectPass()
  {
    srTestCaseAddComment(srTEST_CASE_DEFAULT, "this test should pass");
    srTestCaseSetStatus(srTEST_CASE_DEFAULT, srTEST_PASS, 0);
  }
  void tc_ExpectFail()
  {
    srTestCaseAddComment(srTEST_CASE_DEFAULT, "this test should fail");
    srTestCaseSetStatus(srTEST_CASE_DEFAULT, srTEST_FAIL, 0);
  }
  void tc_ExpectInProgress()
  {
    srTestCaseAddComment(srTEST_CASE_DEFAULT, "this test should be in progress");
  }
};
 
#ifdef _SCL
#pragma scl_test_class(RuntimeServices_basic)
#endif
</source>
 
==== Using a Test Function List ====
<source lang=c>
#include <srtest.h>
 
#ifdef __cplusplus
extern "C" {
#endif
 
void tf_ExpectPass(void)
{
  srTestCaseAddComment(srTEST_CASE_DEFAULT, "this test should pass");
  srTestCaseSetStatus(srTEST_CASE_DEFAULT, srTEST_PASS, 0);
}
void tf_ExpectFail(void)
{
  srTestCaseAddComment(srTEST_CASE_DEFAULT, "this test should fail");
  srTestCaseSetStatus(srTEST_CASE_DEFAULT, srTEST_FAIL, 0);
}
void tf_ExpectInProgress(void)
{
  srTestCaseAddComment(srTEST_CASE_DEFAULT, "this test should be in progress");
}
 
#ifdef _SCL
#pragma scl_test_flist("RuntimeServices_basic", tf_ExpectPass, tf_ExpectFail, tf_ExpectInProgress)
#endif
#ifdef __cplusplus
}
#endif
</source>
 
=== Simple example using srTest base class  ===
<source lang=cpp>
#include <srtest.h>
 
class MyTest : public stride::srTest {
public:
  void tc_ExpectPass()
  {
    testCase.AddComment("this test should pass");
    testCase.SetStatus(srTEST_PASS, 0);
  }
  void tc_ExpectFail()
  {
    testCase.AddComment("this test should fail");
    testCase.SetStatus(srTEST_FAIL, 0);
  }
  void tc_ExpectInProgress()
  {
    testCase.AddComment("this test should be in progress");
  }
  int tc_ChangeMyName()
  {
    testCase.AddComment("this test should have name = MyChangedName");
    testCase.SetName("MyChangedName");
    return 0;
  }
  int tc_ChangeMyDescription()
  {
    testCase.AddComment("this test should have a description set");
    testCase.SetDescription("this is my new description");
    return 0;
  }
};
 
#ifdef _SCL
#pragma scl_test_class(MyTest)
#endif
</source>
 
== Runtime Test Services  ==
 
The Runtime Test Services (declared in srtest.h) are a set of APIs in the STRIDE Runtime that facilitate the writing of target based test code. These APIs make up an optional portion of the STRIDE Runtime and can be used to communicate additional information about tests to the host based reporting mechanism. These APIs also allow target test code to create additional test suites and test cases dynamically at runtime.
 
There are 2 alternate ways of accessing these APIs: through C-based functions, or through a C++ base class from which you may derive your C++ test class. These are discussed below in C Test Functions, and C++ Test Classes sections below.
 
=== C Test Functions ===
 
The following C APIs are provided:
 
*'''[[#srTestSuiteAddSuite|srTestSuiteAddSuite]]''': creates an additional sub-suite at runtime.
*'''[[#srTestSuiteSetName|srTestSuiteSetName]]''': sets the name of the specified suite.
*'''[[#srTestSuiteSetDescription|srTestSuiteSetDescription]]''': sets the description of the specified suite.
*'''[[#srTestSuiteAddTest|srTestSuiteAddTest]]''': creates an additional test case at runtime.
*'''[[#srTestCaseSetName|srTestCaseSetName]]''': sets the name of the specified test case.
*'''[[#srTestCaseSetDescription|srTestCaseSetDescription]]''': sets the description of the specified test case.
*'''[[#srTestCaseAddComment|srTestCaseAddComment]]''': adds a comment to the specified test case.
*'''[[#srTestCaseSetStatus|srTestCaseSetStatus]]''': explicitly sets the status for the specified test case.
*'''[[#srTestSuiteAddAnnotation|srTestSuiteAddAnnotation]]''': creates an annotation at runtime.
*'''[[#srTestAnnotationAddComment|srTestAnnotationAddComment]]''': adds a comment to the specified annotation.
 
 
==== srTestSuiteAddSuite ====
The srTestSuiteAddSuite() routine is used to add a new test suite to the specified test suite.
<source lang=c>
srTestSuiteHandle_t srTestSuiteAddSuite(srTestSuiteHandle_t tParent, const srCHAR * szName)
</source>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
| '''Parameters'''
| '''Type'''
| '''Description'''
|-
| tParent
| Input
| Handle to the parent test suite to which new test suite is to be added. srTEST_SUITE_DEFAULT can be used for the default test suite.
|-
| szName
| Input
| Pointer to a null-terminated string that represents the name of test suite. If null, the default host naming scheme will be used.
|}
<br>
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
| '''Return Value'''
| ''' Description'''
|-
|srTestSuiteHandle_t
| Handle of the newly created test suite. srTEST_SUITE_INVALID indicates failure to create test suite.
|}
 
<source lang=c>
#include <srtest.h>
 
void tfsuite_addSuite(void)
{
  srTestSuiteHandle_t subSuite =
  srTestSuiteAddSuite(srTEST_SUITE_DEFAULT, "tf Sub Suite");
}
 
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfsuite_addSuite)
#endif
</source>
 
==== srTestSuiteSetName ====
The srTestSuiteSetName() routine is used to set the name of the specified test suite.
<source lang=c>
srWORD srTestSuiteSetName(srTestSuiteHandle_t tTestSuite, const srCHAR * szName)
</source>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
| '''Parameters'''
| '''Type'''
| '''Description'''
|-
| tTestSuite
| Input
| Handle to a test suite. srTEST_SUITE_DEFAULT can be used for the default test suite.
|-
| szName
| Input
| Pointer to a null-terminated string representing the name of test suite. Cannot be null.
|}
<br>
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
| '''Return Value'''
| ''' Description'''
|-
| srOK
| Success
|-
| srERR
| Null string passed in.
|-
| srTEST_ERR_HANDLE_INVALID
| Invalid handle passed in.
|-
| srTEST_WARN_STR_TRUNCATED
| String passed in was too large and was truncated.
|}
 
<source lang=c>
#include <srtest.h>
 
void tfsuite_setName(void)
{
  srTestSuiteSetName(srTEST_SUITE_DEFAULT, "Setting name for default suite");
}
 
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfsuite_setName)
#endif
</source>
 
==== srTestSuiteSetDescription ====
The srTestSuiteSetDescription() routine is used to set the description of the specified test suite.
<source lang=c>
srWORD srTestSuiteSetDescription(srTestSuiteHandle_t tTestSuite, const srCHAR * szDescr)
</source>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
| '''Parameters'''
| '''Type'''
| '''Description'''
|-
| tTestSuite
| Input
| Handle to a test suite. srTEST_SUITE_DEFAULT can be used for the default test suite.
|-
| szDescr
| Input
| Pointer to a null-terminated string representing the description of test suite. Cannot be null.
|}
<br>
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
| '''Return Value'''
| ''' Description'''
|-
| srOK
| Success
|-
| srERR
| Null string passed in.
|-
| srTEST_ERR_HANDLE_INVALID
| Invalid handle passed in.
|-
| srTEST_WARN_STR_TRUNCATED
| String passed in was too large and was truncated.
|}
 
<source lang=c>
#include <srtest.h>
void tfsuite_setDescription(void)
{
  srTestSuiteSetDescription(srTEST_SUITE_DEFAULT,
                            "Setting description for default suite");
}
 
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfsuite_setDescription)
#endif
</source>
 
==== srTestSuiteAddTest ====
The srTestSuiteAddTest() routine is used to add a new test case to the specified test suite.
<source lang=c>
srTestCaseHandle_t srTestSuiteAddTest(srTestSuiteHandle_t tParent, const srCHAR * szName)
</source>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
| '''Parameters'''
| '''Type'''
| '''Description'''
|-
| tParent
| Input
| Handle to the parent test suite to which new test case is to be added. srTEST_SUITE_DEFAULT can be used for the default test suite.
|-
| szName
| Input
| Pointer to a null-terminated string that represents the name of test case. If null, the default host naming scheme will be used.
|}
<br>
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
| '''Return Value'''
| ''' Description'''
|-
| srTestCaseHandle_t
| Handle of the newly created test case. srTEST_CASE_INVALID indicates failure to create test case.
|}
 
<source lang=c>
#include <srtest.h>
 
void tfsuite_addTest(void)
{
  for (int count = 0; count < 5; ++count)
  {
    char szName[25];
    sprintf(szName, "dynamic test case %d", count);
    srTestCaseHandle_t test = srTestSuiteAddTest(srTEST_SUITE_DEFAULT, szName);
    srTEST_ADD_COMMENT_WITH_LOCATION(test, "this is a dynamic test case");
  }
}
 
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfsuite_addTest)
#endif
</source>
 
==== srTestCaseSetName ====
The srTestCaseSetName() routine is used to set set the name of the specified test case.
<source lang=c>
srWORD srTestCaseSetName(srTestCaseHandle_t tTestCase, const srCHAR *szName)
</source>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
| '''Parameters'''
| '''Type'''
| '''Description'''
|-
| tTestCase
| Input
| Handle to a test case. srTEST_CASE_DEFAULT can be used for the default test case.
|-
| szName
| Input
| Pointer to a null-terminated string representing the name of test case. Cannot be null.
|}
<br>
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
| '''Return Value'''
| ''' Description'''
|-
| srOK
| Success
|-
| srERR
| Null string passed in.
|-
| srTEST_ERR_HANDLE_INVALID
| Invalid handle passed in.
|-
| srTEST_WARN_STR_TRUNCATED
| String passed in was too large and was truncated.
|}
 
<source lang=c>
#include <srtest.h>
 
void tfcase_setName(void)
{
  srTestCaseSetName(srTEST_CASE_DEFAULT, "Setting name for default case");
}
 
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfcase_setName)
#endif
</source>
 
==== srTestCaseSetDescription ====
The srTestCaseSetDescription() routine is used to set the description of the specified test case.
<source lang=c>
srWORD srTestCaseSetDescription(srTestCaseHandle_t tTestCase, const srCHAR * szDescr)
</source>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
| '''Parameters'''
| '''Type'''
| '''Description'''
|-
| tTestCase
| Input
| Handle to a test case. srTEST_CASE_DEFAULT can be used for the default test case.
|-
| szDescr
| Input
| Pointer to a null-terminated string representing the description of test case. Cannot be null.
|}
<br>
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
| '''Return Value'''
| ''' Description'''
|-
| srOK
| Success
|-
| srERR
| Null string passed in.
|-
| srTEST_ERR_HANDLE_INVALID
| Invalid handle passed in.
|-
| srTEST_WARN_STR_TRUNCATED
| String passed in was too large and was truncated.
|}
 
<source lang=c>
#include <srtest.h>
 
void tfcase_setDescription(void)
{
  srTestCaseSetDescription(srTEST_CASE_DEFAULT,
                          "Setting description for default case");
}
 
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfcase_setDescription)
#endif
</source>
 
==== srTestCaseAddComment ====
The srTestCaseAddComment() routine is used to add a comment (aka a log) to be reported with the specified test case.
<source lang=c>
srWORD srTestCaseAddComment(srTestCaseHandle_t tTestCase, const srCHAR * szFmtComment, ...)
</source>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
| '''Parameters'''
| '''Type'''
| '''Description'''
|-
| tTestCase
| Input
| Handle to a test case. srTEST_CASE_DEFAULT can be used for the default test case.
|-
| szFmtComment
| Input
| Pointer to a null-terminated string, which can be formatted, representing the comment. Cannot be null.
|-
| ...
| Input (Optional)
| Variable argument list to format the comment szFmtComment.
|}
<br>
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
| '''Return Value'''
| ''' Description'''
|-
| srOK
| Success
|-
| srERR
| Null string passed in.
|-
| srTEST_ERR_HANDLE_INVALID
| Invalid handle passed in.
|-
| srTEST_WARN_STR_TRUNCATED
| String passed in was too large and was truncated.
|}
 
<source lang=c>
#include <srtest.h>
 
void tfcase_addComment(void)
{
  srTestCaseAddComment(srTEST_CASE_DEFAULT,
                      "this comment should print %s", "A STRING");
}
 
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfcase_addComment)
#endif
</source>
 
==== srTestCaseSetStatus ====
The srTestCaseSetStatus() routine is used to set the result of test case.
<source lang=c>
srWORD srTestCaseSetStatus(srTestCaseHandle_t tTestCase, srTestStatus_e eStatus, srDWORD dwDuration)
</source>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
| '''Parameters'''
| '''Type'''
| '''Description'''
|-
| tTestCase
| Input
| Handle to a test case. srTEST_CASE_DEFAULT can be used for the default test case.
|-
| eStatus
| Input
| Result of the test.
|-
| dwDuration
| Input
| The duration of the test in clock ticks. Using “0” allows the STRIDE Runtime (Intercept Module) to set the time automatically.
|}
<br>
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
| '''Return Value'''
| ''' Description'''
|-
| srOK
| Success
|-
| srTEST_ERR_HANDLE_INVALID
| Invalid handle passed in.
|}
 
<source lang=c>
#include <srtest.h>
 
void tfcase_setStatus(void)
{
  srTestCaseSetStatus(srTEST_CASE_DEFAULT, srTEST_PASS, 0);
}
 
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfcase_setStatus)
#endif
</source>
 
==== srTestCaseSetStatusEx ====
The srTestCaseSetStatusEx() routine is used to set the result of test case and allow specification of an extendedFailureCode.
<source lang=c>
srWORD srTestCaseSetStatus(srTestCaseHandle_t tTestCase, srTestStatus_e eStatus, srDWORD dwDuration, srLONG lExtendedFailureCode)
</source>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
| '''Parameters'''
| '''Type'''
| '''Description'''
|-
| tTestCase
| Input
| Handle to a test case. srTEST_CASE_DEFAULT can be used for the default test case.
|-
| eStatus
| Input
| Result of the test. dwDuration Input The duration of the test in clock ticks. Using “0” allows the STRIDE Runtime (Intercept Module) to set the time automatically.
|-
| lExtendedFailureCode
| Input
| The Stride framework uses the extendedFailureCode to capture the numeric results of test method when the test method fails via a numeric (non-void, nonbool) return type.
|}
<br>
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
| '''Return Value'''
| ''' Description'''
|-
| srOK
| Success
|-
| srTEST_ERR_HANDLE_INVALID
| Invalid handle passed in.
|}
 
<source lang=c>
#include <srtest.h>
 
void tfcase_setStatusEx(void)
{
  srTestCaseSetStatusEx(srTEST_CASE_DEFAULT, srTEST_FAIL, 0, -5);
}
 
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfcase_setStatusEx)
#endif
</source>
 
==== srTestSuiteAddAnnotation ====
The srTestSuiteAddAnnotation() routine is used to add a new annotation to the specified test suite.
<source lang=c>
srTestAnnotationHandle_t srTestSuiteAddAnnotation(rTestSuiteHandle_t tParent, srTestAnnotationLevel_e eLevel, const srCHAR * szName, const srCHAR * szDescr)
</source>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
| '''Parameters'''
| '''Type'''
| '''Description'''
|-
| tParent
| Input
| Handle to the parent test suite to which new annotation is to be added. srTEST_SUITE_DEFAULT can be used for the default test suite.
|-
| eLevel
| Input
| Annotation level. Cannot be empty.
|-
| szName
| Input
| Pointer to a null-terminated string that represents the name of annotation. If null, the default host naming scheme will be used.
|-
| szDescr
| Input
| Pointer to a null-terminated string representing the description of annotation. If null, description will be empty.
|}
<br>
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
| '''Return Value'''
| ''' Description'''
|-
| srTestAnnotationHandle_t
| HHandle of the newly created annotation. srTEST_ANNOTATION_INVALID indicates failure to create annotation.
|}
 
<source lang=c>
#include <srtest.h>
 
void tfsuite_addAnnotation(void)
{
  for (int count = 0; count < 5; ++count)
  {
    char szName[25];
    sprintf(szName, "annotation %d", count);
    srTestAnnotationHandle_t annot =
                    srTestSuiteAddAnnotation(srTEST_SUITE_DEFAULT,
                                              srTEST_ANNOTATION_LEVEL_ERROR,
                                              szName,
                                              "description of annotation");
  }
}
 
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfsuite_addAnnotation)
#endif
</source>
 
==== srTestAnnotationAddComment ====
The srTestAnnotationAddComment() routine is used to add a comment (aka a log) to be reported with the specified annotation.
<source lang=c>
srWORD srTestAnnotationAddComment(srTestAnnotationHandle_t tTestAnnotation, const srCHAR * szLabel, const srCHAR * szFmtComment, ...)
</source>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
| '''Parameters'''
| '''Type'''
| '''Description'''
|-
| tTestAnnotation
| Input
| Handle to an annotation created using srTestSuiteAddAnnotation.
|-
| szLabel
| Input
| Pointer to a null-terminated string for the label. If null, the default label will be applied.
|-
| szFmtComment
| Input
| Pointer to a null-terminated string, which can be formatted, representing the comment. Cannot be null.
|-
| ...
| Input (Optional)
| Variable argument list to format the comment szFmtComment.
|}
<br>
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
| '''Return Value'''
| ''' Description'''
|-
| srOK
| Success
|-
| srERR
| Null string passed in.
|-
| srTEST_ERR_HANDLE_INVALID
| Invalid handle passed in.
|-
| srTEST_WARN_STR_TRUNCATED
| String passed in was too large and was truncated.
|}
 
<source lang=c>
#include <srtest.h>
 
void tfsuiteAnnotation_addComment(void)
{
  srTestAnnotationHandle_t annot =
                          srTestSuiteAddAnnotation(srTEST_SUITE_DEFAULT,
                                                    srTEST_ANNOTATION_LEVEL_ERROR,
                                                    “annot”,
                                                    “annot description”);
  srTestAnnotationAddComment(annot,
                            srNULL,
                            "this comment should print %s", "A STRING");
}
 
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfsuiteAnnotation_addComment)
#endif
</source>
 
=== C++ Test Classes ===
The Runtime Test Services C APIs work equally well from C test functions and C++ test classes. If, however, you are using C++ it might be more convinient for you to derive your C++ test classes from the Runtime Test Services C++ base class, ''srTest''. That way you will have access to a set of simpler to use C++ classes.
 
The following C++ classes are provided:
* '''[[#class srTest|class srTest]]''' - base test class
* '''[[#class srTestSuite|class srTestSuite]]''' - represents a test suite
* '''[[#class srTestCase|class srTestCase]]''' - represents a test case
* '''[[#class srTestAnnotation|class srTestAnnotation]]''' - represents a test annotation
 
==== class srTest ====
The srTest class provides two Member Objects:
*''testSuite'' of class srTestSuite
*''testCase''of class srTestCase
 
==== class srTestSuite ====
The srTest class provides the folowing methods:
 
===== method AddSuite =====
The AddSuite method is used to add a new test suite.
<source lang=cpp>
srTestSuite AddSuite(const srCHAR * szName = srNULL)
</source>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
| '''Parameters'''
| '''Type'''
| '''Description'''
|-
|szName
| Input (Optional)
| Pointer to null-terminated string that represents the name of test suite. If empty, the default host naming scheme will be used.
|}
<br>
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
| '''Return Value'''
| ''' Description'''
|-
| srTestSuite
| Newly created test suite class.
|}
 
<source lang=cpp>
#include <srtest.h>
 
class srtest_class : public stride::srTest
{
public:
  void suiteAddSuite()
  {
    stride::srTestSuite suite = testSuite.AddSuite("tc Sub Suite");
  }
};
 
#ifdef _SCL
#pragma scl_test_class(srtest_class)
#endif
</source>
 
===== method SetName =====
The SetName method is used to set the name of test suite.
<source lang=cpp>
srWORD SetName(const srCHAR * szName)
</source>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
| '''Parameters'''
| '''Type'''
| '''Description'''
|-
| szName
| Input
| Pointer to null-terminated string representing the name of test suite. Cannot be empty.
|}
<br>
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
| '''Return Value'''
| ''' Description'''
|-
| srOK
| Success
|-
| srERR
| Null string passed in.
|-
| srTEST_ERR_HANDLE_INVALID
| Invalid handle passed in.
|-
| srTEST_WARN_STR_TRUNCATED
| String passed in was too large and was truncated.
|}
 
<source lang=cpp>
#include <srtest.h>
 
class srtest_class : public stride::srTest
{
public:
  void suiteSetName()
  {
    testSuite.SetName("Setting name for suite");
  }
};
 
#ifdef _SCL
#pragma scl_test_class(srtest_class)
#endif
</source>
 
===== method SetDescription =====
The SetDescription method is used to set the description of test suite.
<source lang=cpp>
srWORD SetDescription(const srCHAR * szDescr)
</source>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
| '''Parameters'''
| '''Type'''
| '''Description'''
|-
| szDescr
| Input
| Pointer to null-terminated string representing the description of test suite. Cannot be empty.
|}
<br>
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
| '''Return Value'''
| ''' Description'''
|-
| srOK
| Success
|-
| srERR
| Null string passed in.
|-
| srTEST_ERR_HANDLE_INVALID
| Invalid handle passed in.
|-
| srTEST_WARN_STR_TRUNCATED
| String passed in was too large and was truncated.
|}
 
<source lang=cpp>
#include <srtest.h>
 
class srtest_class : public stride::srTest
{
public:
  void suiteSetDescription()
  {
    testSuite.SetDescription("Setting description for suite");
  }
};
 
#ifdef _SCL
#pragma scl_test_class(srtest_class)
#endif
</source>
 
===== method AddTest =====
The AddTest method is used to add a new test case to test suite.
<source lang=cpp>
srTestCase AddTest(const srCHAR * szName = srNULL)
</source>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
| '''Parameters'''
| '''Type'''
| '''Description'''
|-
| szName
| Input (Optional)
| Pointer to null-terminated string that represents the name of test case. If empty, the default host naming scheme will be used.
|}
<br>
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
| '''Return Value'''
| ''' Description'''
|-
| srTestCase
| Newly created test case class.
|}
<br>
'''Example'''
<source lang=cpp>
#include <srtest.h>
#include <sstream>
 
class srtest_class : public stride::srTest
{
public:
  void suiteAddSuite()
  {
    const std::string prefix("dynamic test case ");
    for (int count = 0; count < 5; ++count)
    {
      std::stringstream strm;
      strm << prefix << count;
      stride::srTestCase tc = testSuite.AddTest(strm.str().c_str());
      tc.AddComment("this is a dynamic test case");
      tc.SetStatus(srTEST_PASS);
    }
  }
};
 
#ifdef _SCL
#pragma scl_test_class(srtest_class)
#endif
</source>
 
===== method AddAnnotation =====
The AddAnnotation method is used to add a new annotation to test suite.
<source lang=cpp>
srTestAnnoation AddAnnotation(srTestAnnotationLevel_e eLevel, const srCHAR * szName = srNULL, const srCHAR * szDescr = srNULL)
</source>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
| '''Parameters'''
| '''Type'''
| '''Description'''
|-
| eLevel
| Input
| Annotation level. Cannot be empty.
|-
| szName
| Input (Optional)
| Pointer to null-terminated string that represents the name of annotation. If empty, the default host naming scheme will be used.
|-
| szDescr
| Input (Optional)
| Pointer to null-terminated string that represents the description of annotation. If empty, the description will be blank.
|}
<br>
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
| '''Return Value'''
| ''' Description'''
|-
| srTestAnnotation
| Newly created annotation class.
|}
 
<source lang=cpp>
#include <srtest.h>
#include <sstream>
 
class srtest_class : public stride::srTest
{
public:
  void suiteAddAnnotation()
  {
    for (int count = 0; count < 5; ++count)
    {
      std::stringstream strmName;
      std::stringstream strmDescr;
      strmName << "annotation " << count;
      strmDescr << "description of annotation " << count;
      stride::srTestAnnotation ta =
                testSuite.AddAnnotation(srTEST_ANNOTATION_LEVEL_INFO,
                                        strmName.str().c_str(),
                                        strmDescr.str().c_str());
    }
  }
};
 
#ifdef _SCL
#pragma scl_test_class(srtest_class)
#endif
</source>
 
==== class srTestCase ====
The srTestCase class provides the following methods:
 
===== method SetName =====
The SetName method is used to set the name of test case.
<source lang=cpp>
srWORD SetName(const srCHAR * szName)
</source>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
| '''Parameters'''
| '''Type'''
| '''Description'''
|-
| szName
| Input
| Pointer to null-terminated string representing the name of test case. Cannot be empty.
|}
<br>
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
| '''Return Value'''
| ''' Description'''
|-
| srOK
| Success
|-
| srERR
| Null string passed in.
|-
| srTEST_ERR_HANDLE_INVALID
| Invalid handle passed in.
|-
| srTEST_WARN_STR_TRUNCATED
| String passed in was too large and was truncated.
|}
 
<source lang=cpp>
#include <srtest.h>
 
class srtest_class : public stride::srTest
{
public:
  void caseSetName()
  {
    testCase.SetName("Setting name for case");
  }
};
 
#ifdef _SCL
#pragma scl_test_class(srtest_class)
#endif
</source>
 
===== method SetDescription =====
The SetDescription method is used to set the description of test case.
<source lang=cpp>
srWORD SetDescription(const srCHAR * szDescr)
</source>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
| '''Parameters'''
| '''Type'''
| '''Description'''
|-
| szDescr
| Input
| Pointer to null-terminated string representing the description of test case. Cannot be empty.
|}
<br>
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
| '''Return Value'''
| ''' Description'''
|-
| srOK
| Success
|-
| srERR
| Null string passed in.
|-
| srTEST_ERR_HANDLE_INVALID
| Invalid handle passed in.
|-
| srTEST_WARN_STR_TRUNCATED
| String passed in was too large and was truncated.
|}
 
<source lang=cpp>
#include <srtest.h>
 
class srtest_class : public stride::srTest
{
public:
  void caseSetDescription()
  {
    testCase.SetDescription("Setting description for case");
  }
};
 
#ifdef _SCL
#pragma scl_test_class(srtest_class)
#endif
</source>
 
===== method AddComment =====
The AddComment method is used to add a comment to test case.
<source lang=cpp>
srWORD AddComment(const srCHAR * szFmtComment, ...)
</source>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
| '''Parameters'''
| '''Type'''
| '''Description'''
|-
| szFmtComment
| Input
| Pointer to null-terminated string, which can be formatted, representing the comment. Cannot be empty.
|-
| ...
| Input (Optional)
| Variable argument list to format the comment szFmtComment.
|}
<br>
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
| '''Return Value'''
| ''' Description'''
|-
| srOK
| Success
|-
| srERR
| Null string passed in.
|-
| srTEST_ERR_HANDLE_INVALID
| Invalid handle passed in.
|-
| srTEST_WARN_STR_TRUNCATED
| String passed in was too large and was truncated.
|}
 
<source lang=cpp>
#include <srtest.h>
 
class srtest_class : public stride::srTest
{
public:
  void caseAddComment()
  {
    testCase.AddComment("this comment should print %s", "A STRING");
  }
};
 
#ifdef _SCL
#pragma scl_test_class(srtest_class)
#endif
</source>
 
===== method SetStatus =====
The SetStatus method is used to set the result of the default test case.
<source lang=cpp>
srWORD SetStatus(srTestStatus_e eStatus, srDWORD dwDuration = 0)
</source>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
| '''Parameters'''
| '''Type'''
| '''Description'''
|-
| eStatus
| Input
| Result of the test.
|-
| dwDuration
| Input (Optional)
| The duration of the test in clock ticks. The default is 0.
|}
<br>
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
| '''Return Value'''
| ''' Description'''
|-
| srOK
| Success
|-
| srTEST_ERR_HANDLE_INVALID
| Invalid handle.
|}
 
<source lang=cpp>
#include <srtest.h>
 
class srtest_class : public stride::srTest
{
public:
  void caseSetStatus()
  {
    testCase.SetStatus(srTEST_INPROGRESS, 0);
  }
};
 
#ifdef _SCL
#pragma scl_test_class(srtest_class)
#endif
</source>
 
==== class srTestAnnotation ====
The srTestAnnotation class provides the following methods:
 
===== method AddComment =====
The AddComment method is used to add a comment to an annotation created under a test suite.
<source lang=cpp>
srWORD AddComment(const srCHAR * szLabel, const srCHAR * szFmtComment, ...)
</source>
 
{| border="1" cellspacing="0" cellpadding="10" style="align:left;" 
| '''Parameters'''
| '''Type'''
| '''Description'''
|-
| szLabel
| Input
| Pointer to null-terminated string for the label. If null, the default label will be applied.
|-
| szFmtComment
| Input
| Pointer to null-terminated string, which can be formatted, representing the comment. Cannot be empty.
|-
| ...
| Input (Optional)
| Variable argument list to format the comment szFmtComment.
|}
<br>
{| border="1" cellspacing="0" cellpadding="10" style="align:left;"
| '''Return Value'''
| ''' Description'''
|-
| srOK
| Success
|-
| srERR
| Null string passed in.
|-
| srTEST_ERR_HANDLE_INVALID
| Invalid handle passed in.
|-
| srTEST_WARN_STR_TRUNCATED
| String passed in was too large and was truncated.
|}
 
<source lang=cpp>
#include <srtest.h>
 
class srtest_class : public stride::srTest
{
public:
  void suiteAnnotationAddComment()
  {
    stride::srTestAnnotation ta =
                testSuite.AddAnnotation(srTEST_ANNOTATION_LEVEL_INFO,
                                        "annot",
                                        "annot description");
    ta.AddComment("this comment on annotation should print %s", "A STRING");
  }
};
 
#ifdef _SCL
#pragma scl_test_class(srtest_class)
#endif
</source>
 
Refer to the [[Media:s2sSCLReferenceGuide.pdf|SCL Reference Guide]] or the [[Media:s2sRuntime.pdf|Runtime Developer's Guide]] for detailed information about any of these APIs.
 
== ASSERT/EXPECT Macros ==
 
The STRIDE Test Unit implementation also provides a set of Test Macros (declared in srtestmacros.h) available for use within test methods. The macros are optional - you are not required to use them in your test units. They provide shortcuts for testing assertions and automatic report annotation in the case of failures. 
 
The macros can be used in C++ and C test unit code (Note that there is no C version of exceptions test).
 
=== General guidelines for all macros ===
 
srEXPECT_xx macros will set the current test case to fail (if it hasn’t already been set) and produce an annotation in the report if the expectation fails. If the expectation succeeds, there is no action.
 
srASSERT_xx macros will set the current test case to fail (if it hasn’t already been set) and insert an annotation into the report if the assertion fails. In addition, a return from the current function will occur. srASSERT_xx macros can only be used in test functions which return void. If the assertion succeeds there is no action.
 
The report annotation produced by a failed macro always includes the source file and line along with details about the condition that failed and the failing values.
 
=== Boolean Macros ===
The boolean macros take a single condition expression, ''cond'', that evaluates to an integral type or bool. The condition will be evaluated once. if ''cond'' evaluates to non-zero the assertion or expectation fails. When a failure occurs the report will be annotated.
 
{| class="prettytable"
| colspan="3" | '''Boolean'''
 
|-
| srEXPECT_TRUE(''cond'');
| srASSERT_TRUE(''cond'');
| ''cond'' is true
 
|-
| srEXPECT_FALSE(''cond'');
| srASSERT_FALSE(''cond'');
| ''cond'' is false
 
|}
 
=== Comparison Macros ===
 
Comparison macros take two operands and compare them using the indicated operator. The comparison macros will work for primitive types as well as objects that have the corresponding comparison operator implemented. 
 
{| class="prettytable"
| colspan="3" | '''Comparison'''
 
|-
| srEXPECT_EQ(''val1'', ''val2'');
| srASSERT_EQ(''val1'', ''val2'');
| ''val1'' == ''val2''
 
|-
| srEXPECT_NE(''val1'', ''val2'');
| srASSERT_NE(''val1'', ''val2'');
| ''val1'' != ''val2''
 
|-
| srEXPECT_LT(''val1'', ''val2'');
| srASSERT_LT(''val1'', ''val2'');
| ''val1''<nowiki> < </nowiki>''val2''
 
|-
| srEXPECT_LE(''val1'', ''val2'');
| srASSERT_LE(''val1'', ''val2'');
| ''val1''<nowiki> <= </nowiki>''val2''
 
|-
| srEXPECT_GT(''val1'', ''val2'');
| srASSERT_GT(''val1'', ''val2'');
| ''val1'' > ''val2''
 
|-
| srEXPECT_GE(''val1'', ''val2'');
| srASSERT_GE(''val1'', ''val2'');
| ''val1'' >= ''val2''
 
|}
 
=== C String Comparison Macros ===
 
C String Comparison Macros are intended only for use with C-style zero terminated strings. The strings can be char or wchar_t based. In particular, these macros should not be used for object of one or other string class, since such classes have overloaded comparison operators. The standard comparison macros should be used instead.
 
* The length of a string displayed in the report annotation message is controllable via the following macro: srCFG_TEST_MACROS_MAX_C_STRING_MESSAGE_DISPLAY (found in srtestmacros.h). If a string value is truncated because of the length limit, the text "...(trunc)" will always appear next to it.
* An empty string will appear in error message output as “”. A null string will appear as NULL with no surrounding quotes. Otherwise all output strings are quoted.
* The type of str1 and str2 must be compatible with const char* or const wchar_t*.
 
{| class="prettytable"
| colspan="3" | '''C-string comparison'''
 
|-
| srEXPECT_STREQ(''str1'', ''str2'');
| srASSERT_STREQ(''str1'', ''str2'');
| ''str1'' and ''str2'' have the same content
 
|-
| srEXPECT_STRNE(''str1'', ''str2'');
| srASSERT_STRNE(''str1'', ''str2'');
| ''str1'' and ''str2'' have different content
 
|-
| srEXPECT_STRCASEEQ(''str1'', ''str2'');
| srASSERT_STRCASEEQ(''str1'', ''str2'');
| ''str1'' and ''str2'' have the same content, ignoring case.
 
|-
| srEXPECT_STRCASENE(''str1'', ''str2'');
| srASSERT_STRCASENE(''str1'', ''str2'');
| ''str1'' and ''str2'' have different content, ignoring case.
 
|}
 
=== Exception Macros ===
Exception macros  are used to ensure that expected exceptions are thrown. They require exception support from the target compiler. If the target compiler does not have exception support the macros cannot be used and must be disabled.  The support can be disabled via the macro srCFG_TEST_MACROS_EXCEPTIONS_ON found in srtestmacros.h.
 
{| class="prettytable"
| colspan="3" | '''Exceptions'''
 
|-
| srEXPECT_THROW(statement, ex_type);
| srASSERT_THROW(statement, ex_type);
| ''statement'' throws an exception of type ''ex_type''
 
|-
| srEXPECT_THROW_ANY(''statement'');
| srASSERT_THROW_ANY(''statement'');
| ''statement'' throws an exception (type not important)
 
|-
| srEXPECT_NO_THROW(''statement'');
| srASSERT_NO_THROW(''statement'');
| ''statement'' does not throw an exception
 
|}
 
=== Predicate Macros ===
Predicate macros allow user control over the pass/fail decision making in a macro. A predicate is a function returning bool that is implemented by the user but passed to the macro. Other arguments for the predicate are also passed to the macro. The macros allow for predicate functions with up to four parameters.
 
{| class="prettytable"
| colspan="3" | '''Predicates'''
 
|-
| srEXPECT_PRED1(''pred'', ''val1'')
| srASSERT_PRED1(''pred'', ''val1'')
| ''pred''(''val1'') returns true
 
|-
| srEXPECT_PRED2(''pred'', ''val1'', ''val2'')
| srASSERT_PRED2(''pred'', ''val1'', ''val2'')
| ''pred''(''val1'', ''val2'') returns true
 
|-
| …(up to arity of 4)
|
|
 
|}
All predicate macros require a predicate function function which returns bool. The predicate macros allow functions with one to 4 parameters. Following are the report annotations resulting from expectation or assertion failures.
 
=== Floating Point Macros ===
Floating point macros are for comparing equivalence (or near equivalence) of floating point numbers. These macros are necessary since because equivalence comparisons for floating point numbers will often fail due to round-off errors.
 
{| class="prettytable"
| colspan="3" | '''Floating Point Macros'''
 
|-
| srEXPECT_NEAR(val1, val2, epsilon);
| srASSERT_NEAR(val1, val2, epsilon);
| The absolute value of the difference between val1 and val2 is epsilon.
|}
 
=== Dynamic Test Case Macros ===
The macros presented so far are not capable of dealing with dynamic test cases. In order to handle dynamic test cases, each of the macros requires another parameter which is the test case to report against. Other than this, these macros provide exactly equivalent functionality to the non-dynamic peer. The dynamic macros are listed below. All require a test case, value of type srTestCaseHandle_t from srtest.h,  to be passed as the first parameter).
 
{| class="prettytable"
| '''''Nonfatal assertion'''''
| '''''Fatal Assertion'''''
 
|-
| colspan="2" | '''Boolean'''
 
|-
| srEXPECT_TRUE_DYN(tc, ''cond'');
| srASSERT_TRUE_DYN(tc, ''cond'');
 
|-
| srEXPECT_FALSE_DYN(tc, ''cond'');
| srASSERT_FALSE_DYN(tc, ''cond'');
 
|-
| colspan="2" | '''Comparison'''
 
|-
| srEXPECT_EQ_DYN(tc, ''val1'', ''val2'');
| srASSERT_EQ_DYN(tc, ''expect'', ''val'');
 
|-
| srEXPECT_NE_DYN(tc, ''val1'', ''val2'');
| srASSERT_NE_DYN(tc, ''val1'', ''val2'');
 
|-
| srEXPECT_LT_DYN(tc, ''val1'', ''val2'');
| srASSERT_LT_DYN(tc, ''val1'', ''val2'');
 
|-
| srEXPECT_LE_DYN(tc, ''val1'', ''val2'');
| srASSERT_LE_DYN(tc, ''val1'', ''val2'');
 
|-
| srEXPECT_GT_DYN(tc, ''val1'', ''val2'');
| srASSERT_GT_DYN(tc, ''val1'', ''val2'');
 
|-
| srEXPECT_GE_DYN(tc, ''val1'', ''val2'');
| srASSERT_GE_DYN(tc, ''val1'', ''val2'');
 
|-
| colspan="2" | '''C-string comparison'''
 
|-
| srEXPECT_STREQ_DYN(tc, ''str1'', ''str2'');
| srASSERT_STREQ_DYN(tc, ''str1'', ''str2'');
 
|-
| srEXPECT_STRNE_DYN(tc, ''str1'', ''str2'');
| srASSERT_STRNE_DYN(tc, ''str1'', ''str2'');
 
|-
| srEXPECT_STRCASEEQ_DYN(tc, ''str1'', ''str2'');
| srASSERT_STRCASEEQ_DYN(tc, ''str1'', ''str2'');
 
|-
| srEXPECT_STRCASENE_DYN(tc, ''str1'', ''str2'');
| srASSERT_STRCASENE_DYN(tc, ''str1'', ''str2'');
 
|-
| colspan="2" | '''Exceptions'''
 
|-
| srEXPECT_THROW_DYN(statement, ex_type);
| srASSERT_THROW_DYN(tc, statement, ex_type);
 
|-
| srEXPECT_THROW_ANY_DYN(tc, ''statement'');
| srASSERT_THROW_ANY_DYN(tc, ''statement'');
 
|-
| srEXPECT_NO_THROW_DYN(tc, ''statement'');
| srASSERT_NO_THROW_DYN(tc, ''statement'');
 
|-
| colspan="2" | '''Predicates'''
 
|-
| srEXPECT_PRED1_DYN(tc, ''pred'', ''val1'');
| srASSERT_PRED1_DYN(tc, ''pred'', ''val1'');
 
|-
| srEXPECT_PRED2_DYN(tc, ''pred'', ''vall'', ''val2'');
| srASSERT_PRED2_DYN(tc, ''pred'', ''vall'', ''val2'');
 
|-
| …(up to arity of 4)
|
 
|-
| colspan="2" | '''Floating Point'''
 
|-
| srEXPECT_NEAR_DYN(tc, ''val1'', ''val2'', ''epsilon'');
| srASSERT_NEAR_DYN(tc, ''val1'', ''val2'', ''epsilon'');
 
|}
 
=== Use operator << for report annotation (C++ tests only) ===
 
In C++ test code all macros support the adding to the report annotations using the << operator. For example:
 
<source lang="cpp">
srEXPECT_TRUE(a != b) << "My custom message";
</source>
 
As delivered, the macros will support stream input annotations for all numeric types, "C" string (char* or wchar_t*) and types allowing implicit cast to numeric type or "C" string. The user may overload the << operator in order to annotate reports using any custom type. An example is below.
 
The following will compile and execute successfully given that the << operator is overloaded as shown:
 
<source lang="cpp">
#include <srtestmacros.h>
 
// MyCustomClass implementation
class MyCustomClass
{
public:
  MyCustomClass(int i) : m_int(i) {}
 
private:
  int m_int;
  friend stride::Message& operator<<(stride::Message& ss, const MyCustomClass& obj);
};
 
stride::Message& operator<<(stride::Message& ss, const MyCustomClass& obj)
{
  ss << obj.m_int;
  return ss;
}
 
void test()
{
    MyCustomClass custom(34);
 
    srEXPECT_FALSE(true) << custom;
}
</source>
 
== Scripting a Test Unit ==
 
To automate the execution and reporting of a Test Unit a script is required. Scripts can be written by hand or automatically generated using the Script Wizard and a corresponding template script. A scripting tool for executing a test unit is the [[AutoScript#ascript.TestUnits|AutoScript TestUnits]] collection. An [[AutoScript#ascript.TestUnits.Item|Ascript TestUnit]] object assembles all of the reporting information for the test unit and its corresponding test methods.
 
*Require usage of the [[AutoScript#ascript.TestUnits|AutoScript TestUnits]] collection
*Can be written by hand (refer below)
*Can leverage [[Templates|Templates]] via the Script Wizard
*Order of multiple test units dictated by SUID assignment
 
<br>
 
=== JScript example for a single test unit  ===
 
The following example script is used to harness a test unit that has been captured using #pragma scl_test_class(Simple).
 
<source lang=javascript>
var tu = ascript.TestUnits.Item("Simple");
// Ensure test unit exists
if (tu != null)
  tu.Run();
</source>
 
=== Perl example for a single test unit  ===
 
The following example script is used to harness a test unit that has been captured using #pragma scl_test_class(Simple).
 
<source lang=perl>
use strict;
use Win32::OLE;
Win32::OLE->Option(Warn => 3);
 
my $tu = $main::ascript->TestUnits->Item("Simple");
if (defined $tu) {
  $tu->Run();
}
</source>
 
=== JScript example for multiple test units  ===
 
The following example script is used to harness two test units that have been captured using #pragma scl_test_class(Simple1) and #pragma scl_test_class(Simple2).
 
<source lang=javascript>
var Units = ["Simple1","Simple2"];
 
// iterate through each function
for (i in Units)
{
  var tu = ascript.TestUnits.Item(Units[i]);
  if ( tu != null )
    tu.Run();
}
</source>
 
=== Perl example for multiple test units  ===
 
The following example script is used to harness two test units that have been captured using #pragma scl_test_class(Simple1) and #pragma scl_test_class(Simple2).
 
<source lang=perl>
use strict;
use Win32::OLE;
Win32::OLE->Option(Warn => 3);
 
# initialize an array with all selected function names
my @UnitNames = ("Simple1","Simple2");
foreach (@UnitNames) { 
  my $tu = $main::ascript->TestUnits->Item($_->[1]);
  die "TestUnit not found: $_->[1]\n" unless (defined $tu);
  $tu->Run();
}
</source>


[[Category:Test Units]]
[[Category:Test Units]]
[[Category:Reference]]

Latest revision as of 23:09, 25 September 2013

What are STRIDE Test Units?

STRIDE Test Units is a general term for xUnit-style test modules running within the STRIDE runtime framework. These tests--written in C and C++--are compiled and linked with your embedded software and run in-place on your target hardware. They are suitable for both developer unit testing as well as end-to-end integration testing.

An external Test Runner is provided which controls the execution of the tests and publishes test results to the local file system and optionally to S2's Internet STRIDE Test Space.

Test Unit Features

In all cases, STRIDE Test Units provide the following capabilities typical of all xUnit-style testing frameworks:

  • Specification of a test as a test method
  • Aggregation of individual tests into test suites which form execution and reporting units
  • Specification of expected results within test methods (typically by using one or more Test Code Macros)
  • Test fixturing (optional setup and teardown)
  • Test parametrization (optional constructor/initialization parameters)
  • Automated execution
  • Automated results report generation

Unique STRIDE Test Unit Features

In addition, STRIDE Test Units offer these unique features:

On-Target Execution
Tests execute on the target hardware in a true operational environment. Execution and reporting is controlled from a remote desktop (Windows, Linux or FreeBSD) host
Dynamic Test and Suite Generation
Test cases and suites can be created and manipulated at runtime
Test Doubles
Dynamic runtime function substitution to implement on-the-fly mocks, stubs, and doubles
Behavior Testing (Test Points)
Support for testing of asynchronous activities occurring in multiple threads
Multiprocess Testing Framework
Support for testing across multiple processes running simultaneously on the target
Automatic Timing Data Collection
Duration are automatically measured for each test case.
Automatic Results Publishing to Local Disk and Internet
Automatic publishing of test results to STRIDE Test Space