Test Units Overview
Introduction
STRIDE enables testing of C/C++ code through the use of xUnit-style test units. Test units can be written by developers, captured using an SCL pragma, and executed from the host. STRIDE facilitates the execution of some or all of the test units by automatically creating entry points for the execution of test units on the target.
Using test units
How to get started (Overview)
The required steps to get started with writing test units are as follows:
- Write a test unit. You may simply create a C++ class with a number of test methods and SCL capture it using scl_test_class pragma:
// testcpp.h class Simple { public: int test1() { return 0;} // PASS int test2() { return 23;} // FAIL <>0 bool test3() { return true;} // PASS bool test4() { return false;} // FAIL }; #ifdef _SCL #pragma scl_test_class(Simple) #endif
Or, if you are writing in C, create a set of global functions and SCL capture them with scl_test_flist pragma (in more complicated scenarious when initialization is required scl_test_cclass pragma could be a better choise):
// testc.h #ifdef __cplusplus extern "C" { #endif int test1(void) { return 0; // PASS } int test1(void) { return 23; // FAIL <>0 } #ifdef _SCL #pragma scl_test_flist("Simple", test1, test2) #endif #ifdef __cplusplus } #endif
- Build and generate the IM code using STRIDE Build Tools:
- Build the generate IM code along with your source to create application's binary.
- Download your application to the Target and start it.
- Execute your test units and publish results using the Test Unit Runner.
> s2scompile --c++ testcpp.h > s2scompile --c testc.h > s2sbind --output=test.sidb testcpp.h.meta testc.h.meta > s2sinstrument --im_name=test test.sidb
If using STRIDE Studio, create a new workspace (or open an existing one), add the above source files, adjust your compiler settings, build and generate the IM manually through the UI, or wite custom scripts to automate the same sequence.
> perl testunitrun.pl -d test.sidb
If using STRIDE Studio, you can execute individual test units interactively by openning the user interface view corresponding to the test unit you would like to execute, then call it. Further more you may write a simple script execute to automate your test units executeion and result publishing.
Pragmas for Test Units
STRIDE supports three pragmas for capturing and qualifying test units:
scl_test_class ( class-name )
: Declares a test class as captured. Once captured, STRIDE will generate the appropriate code for executing the test methods in the class. See the scl_test_class page for more information.scl_test_flist ( test-unit-name , test-function-name { , test-function-name } )
: Declares a test unit as captured, by the specified test-unit-name. One or more functions (test methods) are associated with the test unit. Once captured, STRIDE will generate the appropriate code for executing the associated test methods. See the scl_test_flist page for more information.scl_test_cclass ( struct-name , init-function-name { , deinit-function-name } )
: Declares a test unit as captured. Once captured, STRIDE will generate the appropriate code for executing the associated test methods. See the scl_test_cclass page for more information.scl_test_setup ( test-unit-name , method-name )
: [optional] Declares a member method to be a setup fixture for the test unit. If specified, the setup method will be called before the execution of each test method. See the scl_test_setup page for more information.scl_test_teardown ( test-unit-name , method-name )
: [optional] Declares a member method to be a teardown fixture for the test unit. If specified, the teardown method will be called after the execution of each test method. See the scl_test_teardown page for more information.
Test Unit Requirements
Several variations on typical xUnit-style test units are supported. The additional supported features include:
- Test status can be set using STRIDE Runtime APIs or by specifying simple return types for test methods.
- Integral return types: 0 = PASS; <> 0 = FAIL
- C++ bool return type: true = PASS; false = FAIL
- void return type with no explict status setting is assumed PASS
- Test writers can create additional child suites and tests at runtime by using Runtime APIs.
- We do not rely on exceptions for reporting of status.
The STRIDE test class framework has the following requirements of each test class:
- The test class must have a suitable default (no-argument) constructor.
- The test class must have one or more public methods suitable as test methods. Allowable test methods always take no arguments (void) and return either void, simple integer types (int, short, long or char) or bool. At this time, we do not allow typedef types or macros for the return values specification.
- the scl_test_class pragma must be applied to the class.
Simple example using return values for status
Using a Test Class
#include <srtest.h>
class Simple {
public:
int tc_Int_ExpectPass() {return 0;}
int tc_Int_ExpectFail() {return -1;}
bool tc_Bool_ExpectPass() {return true;}
bool tc_Bool_ExpectFail() {return false;}
};
#ifdef _SCL
#pragma scl_test_class(Simple)
#endif
Using a Test Function List
#include <srtest.h>
#ifdef __cplusplus
extern "C" {
#endif
int tf_Int_ExpectPass(void) {return 0;}
int tf_Int_ExpectFail(void) {return -1;}
#ifdef _SCL
#pragma scl_test_flist("Simple", tf_Int_ExpectPass, tf_Int_ExpectFail)
#endif
#ifdef __cplusplus
}
#endif
Simple example using runtime test service APIs
Using a Test Class
#include <srtest.h>
class RuntimeServices_basic {
public:
void tc_ExpectPass()
{
srTestCaseAddComment(srTEST_CASE_DEFAULT, "this test should pass");
srTestCaseSetStatus(srTEST_CASE_DEFAULT, srTEST_PASS, 0);
}
void tc_ExpectFail()
{
srTestCaseAddComment(srTEST_CASE_DEFAULT, "this test should fail");
srTestCaseSetStatus(srTEST_CASE_DEFAULT, srTEST_FAIL, 0);
}
void tc_ExpectInProgress()
{
srTestCaseAddComment(srTEST_CASE_DEFAULT, "this test should be in progress");
}
};
#ifdef _SCL
#pragma scl_test_class(RuntimeServices_basic)
#endif
Using a Test Function List
#include <srtest.h>
#ifdef __cplusplus
extern "C" {
#endif
void tf_ExpectPass(void)
{
srTestCaseAddComment(srTEST_CASE_DEFAULT, "this test should pass");
srTestCaseSetStatus(srTEST_CASE_DEFAULT, srTEST_PASS, 0);
}
void tf_ExpectFail(void)
{
srTestCaseAddComment(srTEST_CASE_DEFAULT, "this test should fail");
srTestCaseSetStatus(srTEST_CASE_DEFAULT, srTEST_FAIL, 0);
}
void tf_ExpectInProgress(void)
{
srTestCaseAddComment(srTEST_CASE_DEFAULT, "this test should be in progress");
}
#ifdef _SCL
#pragma scl_test_flist("RuntimeServices_basic", tf_ExpectPass, tf_ExpectFail, tf_ExpectInProgress)
#endif
#ifdef __cplusplus
}
#endif
Simple example using srTest base class
#include <srtest.h>
class MyTest : public stride::srTest {
public:
void tc_ExpectPass()
{
testCase.AddComment("this test should pass");
testCase.SetStatus(srTEST_PASS, 0);
}
void tc_ExpectFail()
{
testCase.AddComment("this test should fail");
testCase.SetStatus(srTEST_FAIL, 0);
}
void tc_ExpectInProgress()
{
testCase.AddComment("this test should be in progress");
}
int tc_ChangeMyName()
{
testCase.AddComment("this test should have name = MyChangedName");
testCase.SetName("MyChangedName");
return 0;
}
int tc_ChangeMyDescription()
{
testCase.AddComment("this test should have a description set");
testCase.SetDescription("this is my new description");
return 0;
}
};
#ifdef _SCL
#pragma scl_test_class(MyTest)
#endif
Runtime Test Services
The Runtime Test Services (declared in srtest.h) are a set of APIs in the STRIDE Runtime that facilitate the writing of target based test code. These APIs make up an optional portion of the STRIDE Runtime and can be used to communicate additional information about tests to the host based reporting mechanism. These APIs also allow target test code to create additional test suites and test cases dynamically at runtime.
There are 2 alternate ways of accessing these APIs: through C-based functions, or through a C++ base class from which you may derive your C++ test class. These are discussed below in C Test Functions, and C++ Test Classes sections below.
C Test Functions
The following C APIs are provided:
- srTestSuiteAddSuite: creates an additional sub-suite at runtime.
- srTestSuiteSetName: sets the name of the specified suite.
- srTestSuiteSetDescription: sets the description of the specified suite.
- srTestSuiteAddCase: creates an additional test case at runtime.
- srTestCaseSetName: sets the name of the specified test case.
- srTestCaseSetDescription: sets the description of the specified test case.
- srTestCaseAddComment: adds a comment to the specified test case.
- srTestCaseSetStatus: explicitly sets the status for the specified test case.
- srTestSuiteAddAnnotation: creates an annotation at runtime.
- srTestAnnotationAddComment: adds a comment to the specified annotation.
srTestSuiteAddSuite
The srTestSuiteAddSuite() routine is used to add a new test suite to the specified test suite.
srTestSuiteHandle_t srTestSuiteAddSuite(srTestSuiteHandle_t tParent, const srCHAR * szName)
Parameters | Type | Description |
tParent | Input | Handle to the parent test suite to which new test suite is to be added. srTEST_SUITE_DEFAULT can be used for the default test suite. |
szName | Input | Pointer to a null-terminated string that represents the name of test suite. If null, the default host naming scheme will be used. |
Return Value | Description |
srTestSuiteHandle_t | Handle of the newly created test suite. srTEST_SUITE_INVALID indicates failure to create test suite. |
#include <srtest.h>
void tfsuite_addSuite(void)
{
srTestSuiteHandle_t subSuite =
srTestSuiteAddSuite(srTEST_SUITE_DEFAULT, "tf Sub Suite");
}
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfsuite_addSuite)
#endif
srTestSuiteSetName
The srTestSuiteSetName() routine is used to set the name of the specified test suite.
srWORD srTestSuiteSetName(srTestSuiteHandle_t tTestSuite, const srCHAR * szName)
Parameters | Type | Description |
tTestSuite | Input | Handle to a test suite. srTEST_SUITE_DEFAULT can be used for the default test suite. |
szName | Input | Pointer to a null-terminated string representing the name of test suite. Cannot be null. |
Return Value | Description |
srOK | Success |
srERR | Null string passed in. |
srTEST_ERR_HANDLE_INVALID | Invalid handle passed in. |
srTEST_WARN_STR_TRUNCATED | String passed in was too large and was truncated. |
#include <srtest.h>
void tfsuite_setName(void)
{
srTestSuiteSetName(srTEST_SUITE_DEFAULT, "Setting name for default suite");
}
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfsuite_setName)
#endif
srTestSuiteSetDescription
The srTestSuiteSetDescription() routine is used to set the description of the specified test suite.
srWORD srTestSuiteSetDescription(srTestSuiteHandle_t tTestSuite, const srCHAR * szDescr)
Parameters | Type | Description |
tTestSuite | Input | Handle to a test suite. srTEST_SUITE_DEFAULT can be used for the default test suite. |
szDescr | Input | Pointer to a null-terminated string representing the description of test suite. Cannot be null. |
Return Value | Description |
srOK | Success |
srERR | Null string passed in. |
srTEST_ERR_HANDLE_INVALID | Invalid handle passed in. |
srTEST_WARN_STR_TRUNCATED | String passed in was too large and was truncated. |
#include <srtest.h>
void tfsuite_setDescription(void)
{
srTestSuiteSetDescription(srTEST_SUITE_DEFAULT,
"Setting description for default suite");
}
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfsuite_setDescription)
#endif
srTestSuiteAddCase
The srTestSuiteAddCase() routine is used to add a new test case to the specified test suite.
srTestCaseHandle_t srTestSuiteAddCase(srTestSuiteHandle_t tParent, const srCHAR * szName)
Parameters | Type | Description |
tParent | Input | Handle to the parent test suite to which new test case is to be added. srTEST_SUITE_DEFAULT can be used for the default test suite. |
szName | Input | Pointer to a null-terminated string that represents the name of test case. If null, the default host naming scheme will be used. |
Return Value | Description |
srTestCaseHandle_t | Handle of the newly created test case. srTEST_CASE_INVALID indicates failure to create test case. |
#include <srtest.h>
void tfsuite_addTest(void)
{
for (int count = 0; count < 5; ++count)
{
char szName[25];
sprintf(szName, "dynamic test case %d", count);
srTestCaseHandle_t test = srTestSuiteAddCase(srTEST_SUITE_DEFAULT, szName);
srTEST_ADD_COMMENT_WITH_LOCATION(test, "this is a dynamic test case");
}
}
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfsuite_addTest)
#endif
srTestCaseSetName
The srTestCaseSetName() routine is used to set set the name of the specified test case.
srWORD srTestCaseSetName(srTestCaseHandle_t tTestCase, const srCHAR *szName)
Parameters | Type | Description |
tTestCase | Input | Handle to a test case. srTEST_CASE_DEFAULT can be used for the default test case. |
szName | Input | Pointer to a null-terminated string representing the name of test case. Cannot be null. |
Return Value | Description |
srOK | Success |
srERR | Null string passed in. |
srTEST_ERR_HANDLE_INVALID | Invalid handle passed in. |
srTEST_WARN_STR_TRUNCATED | String passed in was too large and was truncated. |
#include <srtest.h>
void tfcase_setName(void)
{
srTestCaseSetName(srTEST_CASE_DEFAULT, "Setting name for default case");
}
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfcase_setName)
#endif
srTestCaseSetDescription
The srTestCaseSetDescription() routine is used to set the description of the specified test case.
srWORD srTestCaseSetDescription(srTestCaseHandle_t tTestCase, const srCHAR * szDescr)
Parameters | Type | Description |
tTestCase | Input | Handle to a test case. srTEST_CASE_DEFAULT can be used for the default test case. |
szDescr | Input | Pointer to a null-terminated string representing the description of test case. Cannot be null. |
Return Value | Description |
srOK | Success |
srERR | Null string passed in. |
srTEST_ERR_HANDLE_INVALID | Invalid handle passed in. |
srTEST_WARN_STR_TRUNCATED | String passed in was too large and was truncated. |
#include <srtest.h>
void tfcase_setDescription(void)
{
srTestCaseSetDescription(srTEST_CASE_DEFAULT,
"Setting description for default case");
}
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfcase_setDescription)
#endif
srTestCaseAddComment
The srTestCaseAddComment() routine is used to add a comment (aka a log) to be reported with the specified test case.
srWORD srTestCaseAddComment(srTestCaseHandle_t tTestCase, const srCHAR * szFmtComment, ...)
Parameters | Type | Description |
tTestCase | Input | Handle to a test case. srTEST_CASE_DEFAULT can be used for the default test case. |
szFmtComment | Input | Pointer to a null-terminated string, which can be formatted, representing the comment. Cannot be null. |
... | Input (Optional) | Variable argument list to format the comment szFmtComment. |
Return Value | Description |
srOK | Success |
srERR | Null string passed in. |
srTEST_ERR_HANDLE_INVALID | Invalid handle passed in. |
srTEST_WARN_STR_TRUNCATED | String passed in was too large and was truncated. |
#include <srtest.h>
void tfcase_addComment(void)
{
srTestCaseAddComment(srTEST_CASE_DEFAULT,
"this comment should print %s", "A STRING");
}
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfcase_addComment)
#endif
srTestCaseSetStatus
The srTestCaseSetStatus() routine is used to set the result of test case.
srWORD srTestCaseSetStatus(srTestCaseHandle_t tTestCase, srTestStatus_e eStatus, srDWORD dwDuration)
Parameters | Type | Description |
tTestCase | Input | Handle to a test case. srTEST_CASE_DEFAULT can be used for the default test case. |
eStatus | Input | Result of the test. |
dwDuration | Input | The duration of the test in clock ticks. Using “0” allows the STRIDE Runtime (Intercept Module) to set the time automatically. |
Return Value | Description |
srOK | Success |
srTEST_ERR_HANDLE_INVALID | Invalid handle passed in. |
#include <srtest.h>
void tfcase_setStatus(void)
{
srTestCaseSetStatus(srTEST_CASE_DEFAULT, srTEST_PASS, 0);
}
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfcase_setStatus)
#endif
srTestCaseSetStatusEx
The srTestCaseSetStatusEx() routine is used to set the result of test case and allow specification of an extendedFailureCode.
srWORD srTestCaseSetStatus(srTestCaseHandle_t tTestCase, srTestStatus_e eStatus, srDWORD dwDuration, srLONG lExtendedFailureCode)
Parameters | Type | Description |
tTestCase | Input | Handle to a test case. srTEST_CASE_DEFAULT can be used for the default test case. |
eStatus | Input | Result of the test. dwDuration Input The duration of the test in clock ticks. Using “0” allows the STRIDE Runtime (Intercept Module) to set the time automatically. |
lExtendedFailureCode | Input | The Stride framework uses the extendedFailureCode to capture the numeric results of test method when the test method fails via a numeric (non-void, nonbool) return type. |
Return Value | Description |
srOK | Success |
srTEST_ERR_HANDLE_INVALID | Invalid handle passed in. |
#include <srtest.h>
void tfcase_setStatusEx(void)
{
srTestCaseSetStatusEx(srTEST_CASE_DEFAULT, srTEST_FAIL, 0, -5);
}
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfcase_setStatusEx)
#endif
srTestSuiteAddAnnotation
The srTestSuiteAddAnnotation() routine is used to add a new annotation to the specified test suite.
srTestAnnotationHandle_t srTestSuiteAddAnnotation(rTestSuiteHandle_t tParent, srTestAnnotationLevel_e eLevel, const srCHAR * szName, const srCHAR * szDescr)
Parameters | Type | Description |
tParent | Input | Handle to the parent test suite to which new annotation is to be added. srTEST_SUITE_DEFAULT can be used for the default test suite. |
eLevel | Input | Annotation level. Cannot be empty. |
szName | Input | Pointer to a null-terminated string that represents the name of annotation. If null, the default host naming scheme will be used. |
szDescr | Input | Pointer to a null-terminated string representing the description of annotation. If null, description will be empty. |
Return Value | Description |
srTestAnnotationHandle_t | HHandle of the newly created annotation. srTEST_ANNOTATION_INVALID indicates failure to create annotation. |
#include <srtest.h>
void tfsuite_addAnnotation(void)
{
for (int count = 0; count < 5; ++count)
{
char szName[25];
sprintf(szName, "annotation %d", count);
srTestAnnotationHandle_t annot =
srTestSuiteAddAnnotation(srTEST_SUITE_DEFAULT,
srTEST_ANNOTATION_LEVEL_ERROR,
szName,
"description of annotation");
}
}
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfsuite_addAnnotation)
#endif
srTestAnnotationAddComment
The srTestAnnotationAddComment() routine is used to add a comment (aka a log) to be reported with the specified annotation.
srWORD srTestAnnotationAddComment(srTestAnnotationHandle_t tTestAnnotation, const srCHAR * szLabel, const srCHAR * szFmtComment, ...)
Parameters | Type | Description |
tTestAnnotation | Input | Handle to an annotation created using srTestSuiteAddAnnotation. |
szLabel | Input | Pointer to a null-terminated string for the label. If null, the default label will be applied. |
szFmtComment | Input | Pointer to a null-terminated string, which can be formatted, representing the comment. Cannot be null. |
... | Input (Optional) | Variable argument list to format the comment szFmtComment. |
Return Value | Description |
srOK | Success |
srERR | Null string passed in. |
srTEST_ERR_HANDLE_INVALID | Invalid handle passed in. |
srTEST_WARN_STR_TRUNCATED | String passed in was too large and was truncated. |
#include <srtest.h>
void tfsuiteAnnotation_addComment(void)
{
srTestAnnotationHandle_t annot =
srTestSuiteAddAnnotation(srTEST_SUITE_DEFAULT,
srTEST_ANNOTATION_LEVEL_ERROR,
“annot”,
“annot description”);
srTestAnnotationAddComment(annot,
srNULL,
"this comment should print %s", "A STRING");
}
#ifdef _SCL
#pragma scl_test_flist(“testfunc”, tfsuiteAnnotation_addComment)
#endif
C++ Test Classes
The Runtime Test Services C APIs work equally well from C test functions and C++ test classes. If, however, you are using C++ it might be more convinient for you to derive your C++ test classes from the Runtime Test Services C++ base class, srTest. That way you will have access to a set of simpler to use C++ classes.
The following C++ classes are provided:
- class srTest - base test class
- class srTestSuite - represents a test suite
- class srTestCase - represents a test case
- class srTestAnnotation - represents a test annotation
class srTest
The srTest class provides two Member Objects:
- testSuite of class srTestSuite
- testCaseof class srTestCase
class srTestSuite
The srTest class provides the folowing methods:
method AddSuite
The AddSuite method is used to add a new test suite.
srTestSuite AddSuite(const srCHAR * szName = srNULL)
Parameters | Type | Description |
szName | Input (Optional) | Pointer to null-terminated string that represents the name of test suite. If empty, the default host naming scheme will be used. |
Return Value | Description |
srTestSuite | Newly created test suite class. |
#include <srtest.h>
class srtest_class : public stride::srTest
{
public:
void suiteAddSuite()
{
stride::srTestSuite suite = testSuite.AddSuite("tc Sub Suite");
}
};
#ifdef _SCL
#pragma scl_test_class(srtest_class)
#endif
method SetName
The SetName method is used to set the name of test suite.
srWORD SetName(const srCHAR * szName)
Parameters | Type | Description |
szName | Input | Pointer to null-terminated string representing the name of test suite. Cannot be empty. |
Return Value | Description |
srOK | Success |
srERR | Null string passed in. |
srTEST_ERR_HANDLE_INVALID | Invalid handle passed in. |
srTEST_WARN_STR_TRUNCATED | String passed in was too large and was truncated. |
#include <srtest.h>
class srtest_class : public stride::srTest
{
public:
void suiteSetName()
{
testSuite.SetName("Setting name for suite");
}
};
#ifdef _SCL
#pragma scl_test_class(srtest_class)
#endif
method SetDescription
The SetDescription method is used to set the description of test suite.
srWORD SetDescription(const srCHAR * szDescr)
Parameters | Type | Description |
szDescr | Input | Pointer to null-terminated string representing the description of test suite. Cannot be empty. |
Return Value | Description |
srOK | Success |
srERR | Null string passed in. |
srTEST_ERR_HANDLE_INVALID | Invalid handle passed in. |
srTEST_WARN_STR_TRUNCATED | String passed in was too large and was truncated. |
#include <srtest.h>
class srtest_class : public stride::srTest
{
public:
void suiteSetDescription()
{
testSuite.SetDescription("Setting description for suite");
}
};
#ifdef _SCL
#pragma scl_test_class(srtest_class)
#endif
method AddTest
The AddTest method is used to add a new test case to test suite.
srTestCase AddTest(const srCHAR * szName = srNULL)
Parameters | Type | Description |
szName | Input (Optional) | Pointer to null-terminated string that represents the name of test case. If empty, the default host naming scheme will be used. |
Return Value | Description |
srTestCase | Newly created test case class. |
Example
#include <srtest.h>
#include <sstream>
class srtest_class : public stride::srTest
{
public:
void suiteAddSuite()
{
const std::string prefix("dynamic test case ");
for (int count = 0; count < 5; ++count)
{
std::stringstream strm;
strm << prefix << count;
stride::srTestCase tc = testSuite.AddTest(strm.str().c_str());
tc.AddComment("this is a dynamic test case");
tc.SetStatus(srTEST_PASS);
}
}
};
#ifdef _SCL
#pragma scl_test_class(srtest_class)
#endif
method AddAnnotation
The AddAnnotation method is used to add a new annotation to test suite.
srTestAnnoation AddAnnotation(srTestAnnotationLevel_e eLevel, const srCHAR * szName = srNULL, const srCHAR * szDescr = srNULL)
Parameters | Type | Description |
eLevel | Input | Annotation level. Cannot be empty. |
szName | Input (Optional) | Pointer to null-terminated string that represents the name of annotation. If empty, the default host naming scheme will be used. |
szDescr | Input (Optional) | Pointer to null-terminated string that represents the description of annotation. If empty, the description will be blank. |
Return Value | Description |
srTestAnnotation | Newly created annotation class. |
#include <srtest.h>
#include <sstream>
class srtest_class : public stride::srTest
{
public:
void suiteAddAnnotation()
{
for (int count = 0; count < 5; ++count)
{
std::stringstream strmName;
std::stringstream strmDescr;
strmName << "annotation " << count;
strmDescr << "description of annotation " << count;
stride::srTestAnnotation ta =
testSuite.AddAnnotation(srTEST_ANNOTATION_LEVEL_INFO,
strmName.str().c_str(),
strmDescr.str().c_str());
}
}
};
#ifdef _SCL
#pragma scl_test_class(srtest_class)
#endif
class srTestCase
The srTestCase class provides the following methods:
method SetName
The SetName method is used to set the name of test case.
srWORD SetName(const srCHAR * szName)
Parameters | Type | Description |
szName | Input | Pointer to null-terminated string representing the name of test case. Cannot be empty. |
Return Value | Description |
srOK | Success |
srERR | Null string passed in. |
srTEST_ERR_HANDLE_INVALID | Invalid handle passed in. |
srTEST_WARN_STR_TRUNCATED | String passed in was too large and was truncated. |
#include <srtest.h>
class srtest_class : public stride::srTest
{
public:
void caseSetName()
{
testCase.SetName("Setting name for case");
}
};
#ifdef _SCL
#pragma scl_test_class(srtest_class)
#endif
method SetDescription
The SetDescription method is used to set the description of test case.
srWORD SetDescription(const srCHAR * szDescr)
Parameters | Type | Description |
szDescr | Input | Pointer to null-terminated string representing the description of test case. Cannot be empty. |
Return Value | Description |
srOK | Success |
srERR | Null string passed in. |
srTEST_ERR_HANDLE_INVALID | Invalid handle passed in. |
srTEST_WARN_STR_TRUNCATED | String passed in was too large and was truncated. |
#include <srtest.h>
class srtest_class : public stride::srTest
{
public:
void caseSetDescription()
{
testCase.SetDescription("Setting description for case");
}
};
#ifdef _SCL
#pragma scl_test_class(srtest_class)
#endif
method AddComment
The AddComment method is used to add a comment to test case.
srWORD AddComment(const srCHAR * szFmtComment, ...)
Parameters | Type | Description |
szFmtComment | Input | Pointer to null-terminated string, which can be formatted, representing the comment. Cannot be empty. |
... | Input (Optional) | Variable argument list to format the comment szFmtComment. |
Return Value | Description |
srOK | Success |
srERR | Null string passed in. |
srTEST_ERR_HANDLE_INVALID | Invalid handle passed in. |
srTEST_WARN_STR_TRUNCATED | String passed in was too large and was truncated. |
#include <srtest.h>
class srtest_class : public stride::srTest
{
public:
void caseAddComment()
{
testCase.AddComment("this comment should print %s", "A STRING");
}
};
#ifdef _SCL
#pragma scl_test_class(srtest_class)
#endif
method SetStatus
The SetStatus method is used to set the result of the default test case.
srWORD SetStatus(srTestStatus_e eStatus, srDWORD dwDuration = 0)
Parameters | Type | Description |
eStatus | Input | Result of the test. |
dwDuration | Input (Optional) | The duration of the test in clock ticks. The default is 0. |
Return Value | Description |
srOK | Success |
srTEST_ERR_HANDLE_INVALID | Invalid handle. |
#include <srtest.h>
class srtest_class : public stride::srTest
{
public:
void caseSetStatus()
{
testCase.SetStatus(srTEST_INPROGRESS, 0);
}
};
#ifdef _SCL
#pragma scl_test_class(srtest_class)
#endif
class srTestAnnotation
The srTestAnnotation class provides the following methods:
method AddComment
The AddComment method is used to add a comment to an annotation created under a test suite.
srWORD AddComment(const srCHAR * szLabel, const srCHAR * szFmtComment, ...)
Parameters | Type | Description |
szLabel | Input | Pointer to null-terminated string for the label. If null, the default label will be applied. |
szFmtComment | Input | Pointer to null-terminated string, which can be formatted, representing the comment. Cannot be empty. |
... | Input (Optional) | Variable argument list to format the comment szFmtComment. |
Return Value | Description |
srOK | Success |
srERR | Null string passed in. |
srTEST_ERR_HANDLE_INVALID | Invalid handle passed in. |
srTEST_WARN_STR_TRUNCATED | String passed in was too large and was truncated. |
#include <srtest.h>
class srtest_class : public stride::srTest
{
public:
void suiteAnnotationAddComment()
{
stride::srTestAnnotation ta =
testSuite.AddAnnotation(srTEST_ANNOTATION_LEVEL_INFO,
"annot",
"annot description");
ta.AddComment("this comment on annotation should print %s", "A STRING");
}
};
#ifdef _SCL
#pragma scl_test_class(srtest_class)
#endif
Refer to the SCL Reference Guide or the Runtime Developer's Guide for detailed information about any of these APIs.
Test Macros
The STRIDE Test Unit implementation also provides a set of Test Macros (declared in srtest.h) available for use within test methods. The macros are optional - you are not required to use them in your test units. They provide shortcuts for testing assertions and automatic report annotation in the case of failures.
The macros can be used in C++ and C test unit code (Note that there is no C version of exceptions test).
General guidelines for all macros
srEXPECT_xx macros will set the current test case to fail (if it hasn’t already been set) and produce an annotation in the report if the expectation fails. If the expectation succeeds, there is no action.
srASSERT_xx macros will set the current test case to fail (if it hasn’t already been set) and insert an annotation into the report if the assertion fails. In addition, a return from the current function will occur. srASSERT_xx macros can only be used in test functions which return void. If the assertion succeeds there is no action.
srLOG macro will add a new comment to the current test case and produce an annotation in the report with specified level of importance.
The report annotation produced by a failed macro always includes the source file and line along with details about the condition that failed and the failing values.
Boolean Macros
The boolean macros take a single condition expression, cond, that evaluates to an integral type or bool. The condition will be evaluated once. if cond evaluates to non-zero the assertion or expectation fails. When a failure occurs the report will be annotated.
Boolean | ||
srEXPECT_TRUE(cond); | srASSERT_TRUE(cond); | cond is true |
srEXPECT_FALSE(cond); | srASSERT_FALSE(cond); | cond is false |
Comparison Macros
Comparison macros take two operands and compare them using the indicated operator. The comparison macros will work for primitive types as well as objects that have the corresponding comparison operator implemented.
Comparison | ||
srEXPECT_EQ(val1, val2); | srASSERT_EQ(val1, val2); | val1 == val2 |
srEXPECT_NE(val1, val2); | srASSERT_NE(val1, val2); | val1 != val2 |
srEXPECT_LT(val1, val2); | srASSERT_LT(val1, val2); | val1 < val2 |
srEXPECT_LE(val1, val2); | srASSERT_LE(val1, val2); | val1 <= val2 |
srEXPECT_GT(val1, val2); | srASSERT_GT(val1, val2); | val1 > val2 |
srEXPECT_GE(val1, val2); | srASSERT_GE(val1, val2); | val1 >= val2 |
C String Comparison Macros
C String Comparison Macros are intended only for use with C-style zero terminated strings. The strings can be char or wchar_t based. In particular, these macros should not be used for object of one or other string class, since such classes have overloaded comparison operators. The standard comparison macros should be used instead.
- An empty string will appear in error message output as “”. A null string will appear as NULL with no surrounding quotes. Otherwise all output strings are quoted.
- The type of str1 and str2 must be compatible with const char* or const wchar_t*.
C-string comparison | ||
srEXPECT_STREQ(str1, str2); | srASSERT_STREQ(str1, str2); | str1 and str2 have the same content |
srEXPECT_STRNE(str1, str2); | srASSERT_STRNE(str1, str2); | str1 and str2 have different content |
srEXPECT_STRCASEEQ(str1, str2); | srASSERT_STRCASEEQ(str1, str2); | str1 and str2 have the same content, ignoring case. |
srEXPECT_STRCASENE(str1, str2); | srASSERT_STRCASENE(str1, str2); | str1 and str2 have different content, ignoring case. |
Exception Macros
Exception macros are used to ensure that expected exceptions are thrown. They require exception support from the target compiler. If the target compiler does not have exception support the macros cannot be used and must be disabled.
Exceptions | ||
srEXPECT_THROW(statement, ex_type); | srASSERT_THROW(statement, ex_type); | statement throws an exception of type ex_type |
srEXPECT_THROW_ANY(statement); | srASSERT_THROW_ANY(statement); | statement throws an exception (type not important) |
srEXPECT_NO_THROW(statement); | srASSERT_NO_THROW(statement); | statement does not throw an exception |
Predicate Macros
Predicate macros allow user control over the pass/fail decision making in a macro. A predicate is a function returning bool that is implemented by the user but passed to the macro. Other arguments for the predicate are also passed to the macro. The macros allow for predicate functions with up to four parameters.
Predicates | ||
srEXPECT_PRED1(pred, val1) | srASSERT_PRED1(pred, val1) | pred(val1) returns true |
srEXPECT_PRED2(pred, val1, val2) | srASSERT_PRED2(pred, val1, val2) | pred(val1, val2) returns true |
…(up to arity of 4) |
All predicate macros require a predicate function function which returns bool. The predicate macros allow functions with one to 4 parameters. Following are the report annotations resulting from expectation or assertion failures.
Floating Point Comparison Macros
Floating point macros are for comparing equivalence (or near equivalence) of floating point numbers. These macros are necessary since because equivalence comparisons for floating point numbers will often fail due to round-off errors.
Floating Point comparison | ||
srEXPECT_NEAR(val1, val2, epsilon); | srASSERT_NEAR(val1, val2, epsilon); | The absolute value of the difference between val1 and val2 is epsilon. |
Log Macros
Log macros allow message logging with level of importance - error, warning...
Logging | ||
srLOG(level, message); | For convinience helpers srLOG_ERROR(message), srLOG_WARNING(message), srLOG_INFO(message) are provided. |
Dynamic Test Case Macros
The macros presented so far are not capable of dealing with dynamic test cases. In order to handle dynamic test cases, each of the macros requires another parameter which is the test case to report against. Other than this, these macros provide exactly equivalent functionality to the non-dynamic peer. The dynamic macros are listed below. All require a test case, value of type srTestCaseHandle_t from srtest.h, to be passed as the first parameter).
Nonfatal assertion | Fatal Assertion |
Boolean | |
srEXPECT_TRUE_DYN(tc, cond); | srASSERT_TRUE_DYN(tc, cond); |
srEXPECT_FALSE_DYN(tc, cond); | srASSERT_FALSE_DYN(tc, cond); |
Comparison | |
srEXPECT_EQ_DYN(tc, val1, val2); | srASSERT_EQ_DYN(tc, expect, val); |
srEXPECT_NE_DYN(tc, val1, val2); | srASSERT_NE_DYN(tc, val1, val2); |
srEXPECT_LT_DYN(tc, val1, val2); | srASSERT_LT_DYN(tc, val1, val2); |
srEXPECT_LE_DYN(tc, val1, val2); | srASSERT_LE_DYN(tc, val1, val2); |
srEXPECT_GT_DYN(tc, val1, val2); | srASSERT_GT_DYN(tc, val1, val2); |
srEXPECT_GE_DYN(tc, val1, val2); | srASSERT_GE_DYN(tc, val1, val2); |
C-string comparison | |
srEXPECT_STREQ_DYN(tc, str1, str2); | srASSERT_STREQ_DYN(tc, str1, str2); |
srEXPECT_STRNE_DYN(tc, str1, str2); | srASSERT_STRNE_DYN(tc, str1, str2); |
srEXPECT_STRCASEEQ_DYN(tc, str1, str2); | srASSERT_STRCASEEQ_DYN(tc, str1, str2); |
srEXPECT_STRCASENE_DYN(tc, str1, str2); | srASSERT_STRCASENE_DYN(tc, str1, str2); |
Exceptions | |
srEXPECT_THROW_DYN(statement, ex_type); | srASSERT_THROW_DYN(tc, statement, ex_type); |
srEXPECT_THROW_ANY_DYN(tc, statement); | srASSERT_THROW_ANY_DYN(tc, statement); |
srEXPECT_NO_THROW_DYN(tc, statement); | srASSERT_NO_THROW_DYN(tc, statement); |
Predicates | |
srEXPECT_PRED1_DYN(tc, pred, val1); | srASSERT_PRED1_DYN(tc, pred, val1); |
srEXPECT_PRED2_DYN(tc, pred, vall, val2); | srASSERT_PRED2_DYN(tc, pred, vall, val2); |
…(up to arity of 4) | |
Floating Point | |
srEXPECT_NEAR_DYN(tc, val1, val2, epsilon); | srASSERT_NEAR_DYN(tc, val1, val2, epsilon); |
Logging | |
srLOG_DYN(tc, level, message); |
Use operator << for report annotation (C++ tests only)
In C++ test code all macros support the adding to the report annotations using the << operator. For example:
srEXPECT_TRUE(a != b) << "My custom message";
As delivered, the macros will support stream input annotations for all numeric types, "C" string (char* or wchar_t*) and types allowing implicit cast to numeric type or "C" string. The user may overload the << operator in order to annotate reports using any custom type. An example is below.
The following will compile and execute successfully given that the << operator is overloaded as shown:
#include <srtest.h>
// MyCustomClass implementation
class MyCustomClass
{
public:
MyCustomClass(int i) : m_int(i) {}
private:
int m_int;
friend stride::Message& operator<<(stride::Message& ss, const MyCustomClass& obj);
};
stride::Message& operator<<(stride::Message& ss, const MyCustomClass& obj)
{
ss << obj.m_int;
return ss;
}
void test()
{
MyCustomClass custom(34);
srEXPECT_FALSE(true) << custom;
}
Scripting a Test Unit
To automate the execution and reporting of a Test Unit a script is required. Scripts can be written by hand or automatically generated using the Script Wizard and a corresponding template script. A scripting tool for executing a test unit is the AutoScript TestUnits collection. An Ascript TestUnit object assembles all of the reporting information for the test unit and its corresponding test methods.
- Require usage of the AutoScript TestUnits collection
- Can be written by hand (refer below)
- Can leverage Templates via the Script Wizard
- Order of multiple test units dictated by SUID assignment
JScript example for a single test unit
The following example script is used to harness a test unit that has been captured using #pragma scl_test_class(Simple).
var tu = ascript.TestUnits.Item("Simple");
// Ensure test unit exists
if (tu != null)
tu.Run();
Perl example for a single test unit
The following example script is used to harness a test unit that has been captured using #pragma scl_test_class(Simple).
use strict;
use Win32::OLE;
Win32::OLE->Option(Warn => 3);
my $tu = $main::ascript->TestUnits->Item("Simple");
if (defined $tu) {
$tu->Run();
}
JScript example for multiple test units
The following example script is used to harness two test units that have been captured using #pragma scl_test_class(Simple1) and #pragma scl_test_class(Simple2).
var Units = ["Simple1","Simple2"];
// iterate through each function
for (i in Units)
{
var tu = ascript.TestUnits.Item(Units[i]);
if ( tu != null )
tu.Run();
}
Perl example for multiple test units
The following example script is used to harness two test units that have been captured using #pragma scl_test_class(Simple1) and #pragma scl_test_class(Simple2).
use strict;
use Win32::OLE;
Win32::OLE->Option(Warn => 3);
# initialize an array with all selected function names
my @UnitNames = ("Simple1","Simple2");
foreach (@UnitNames) {
my $tu = $main::ascript->TestUnits->Item($_->[1]);
die "TestUnit not found: $_->[1]\n" unless (defined $tu);
$tu->Run();
}